

Distinct mRNA, protein expression patterns and distribution of oestrogen receptors α and β in human primary breast cancer: Correlation with proliferation marker Ki-67 and clinicopathological factors

Katarzyna Jarzabek ^{a,*}, Mariusz Koda ^b, Leszek Kozlowski ^c, Herve Mittre ^d, Stanislaw Sulkowski ^b, Marie-Laure Kottler ^d, Slawomir Wolczynski ^a

^a Department of Gynaecological Endocrinology, Medical University of Bialystok, Sklodowskiej 24A, Bialystok, Poland

^b Department of Pathology, Medical University of Bialystok, Washyngtona 13, Bialystok, Poland

^c Department of Oncology, Medical University of Bialystok, Ogrodowa 12, Bialystok, Poland

^d Department Genetique et Reproduction CHU Caen, France

Received 9 May 2005; received in revised form 23 August 2005; accepted 2 September 2005

Available online 10 November 2005

Abstract

To elucidate the molecular profile of oestrogen receptors α and β (ER α , ER β) we studied ER α and ER β expression at the mRNA and protein levels using real-time polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemical (IHC) methods in 41 primary breast cancers and surrounding tissues. ER α mRNA and ER β mRNA were detected in all of the breast cancer and normal matched tissues analysed. ER α mRNA levels showed greater diversity than ER β mRNA levels and the range of amount of ER β transcripts was far smaller than that of ER α . At the protein level, the percentage of ER α - or ER β -positive cases changed. Seventy percent of the tumours studied produced full-length 65 kDa ER α protein in Western blot analysis and 67% of assessed cases were positive in IHC. Full-length 57 kDa ER β protein was detected by Western blotting in 97% of analysed breast cancers, while 67% were ER β -positive using IHC. ER α was localised in the nucleus, while cytoplasmic and perinuclear localisation of ER β was observed in normal as well as in breast cancer cells. The amount of ER α (but not ER β) increased with age. The expression of ER α correlated positively with progesterone receptor and negatively with proliferation marker Ki-67. These results confirm the previous observations that the lack of ER α protein expression is not due to lack of ER α gene expression or methylation of ER α promoter, but due to post-transcriptional or post-translational mechanisms. Our investigation also suggests that ER α is more dysregulated in breast cancer, and thereby ER β is more tightly regulated in the tumour.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Oestrogen receptor α ; Oestrogen receptor β ; Ki-67; Breast cancer

1. Introduction

Oestrogens play a key role in the genesis and progression of breast cancer, activating two oestrogen receptors alpha and beta (ER α and ER β). Immunohistochemical

(IHC) studies showed that in normal mammary glands ER β was a predominant receptor while ER α was expressed only in 5–15% of normal epithelial cells [1]. In the early stage of breast cancer the overexpression of ER α was observed in 70% of breast tumours, and it is thought that this upregulation is an initial significant event in breast cancer biology. The molecular mechanism leading to overexpression of ER α is still not clear. de Graffenreid *et al.* [2,3] proposed a model that is

* Corresponding author. Tel.: +48 85 746 88 18.
E-mail address: kasia.jarzabek@gmail.com (K. Jarzabek).

responsible for high expression levels of the ER α gene in breast cancer cells. This model is based on the regulation of transcription through *cis*-acting elements and *trans*-acting factors, such as USF-1 transcriptional factor, SP-1 transcriptional factor and ER α , which together are responsible for transactivating the minimal promoter and the enhanced ER α transcription. There are some studies that have demonstrated that ER α expression is regulated at the mRNA level, partly by changes in mRNA stability, as well as at the post-translational level. Recent studies have shown constitutive expression of ER α mRNA in all breast tumours, even those that are ER α -negative in IHC study [4]. This suggests that epigenetic events, such as methylation of CpG islands in the ER promoter, are not the major regulatory mechanism responsible for ER α gene inactivation.

There are a few studies addressing a possible role for ER β in human breast cancer. ER β was expressed at much lower rates than ER α [5]. The expression of ER α protein in breast cancer predicts a favourable disease outcome and selects patients for anti-oestrogen treatment. Approximately one-third of primary breast cancers do not express ER α and are classified as ER-negative. Lack of ER α expression often reveals more aggressive phenotypes [6]. Whether ER β plays an important role in human breast cancer development or response to endocrine therapy remains an open question. Although in some studies it has been shown that ER β is significantly associated with poor prognostic features including lymph node-positive tumours and resistance to tamoxifen therapy [7], other investigations have suggested no correlation between ER β expression and tumour size, grade and node status [8,9].

The clinical importance expression of ERs in breast cancer prompted us to characterise the pattern of both ER α and ER β in primary breast cancer tissues and matched tissues at mRNA level using real-time polymerase chain reaction (RT-PCR) and protein levels by Western blotting and IHC techniques. The expression of ERs was correlated with expression of progesterone receptor (PGR) and Ki-67, and with known clinicopathological features of malignant potential.

2. Materials and methods

2.1. Patients and samples

The study subjects comprised 41 women treated surgically for primary breast cancer. A total of 41 tumour samples and 20 matched (adjacent) normal mammary gland tissues were frozen in liquid nitrogen and kept at -80°C until use. Tumour samples, adjacent normal tissue and lymph nodes were also fixed in 10% (v/v) buffered formaldehyde solution for 48 h and then embed-

ded in paraffin blocks at 56°C according to standard procedures.

Tumour samples were cut into 5- μm thick sections and stained with haematoxylin-eosin. Histopathological examination was based on the World Health Organization (WHO) and pTN classification of breast tumours [10]. The study comprised only invasive ductal carcinomas, representing G2 (19 patients, cases) and G3 (22 patients) grade. Histopathological grading (G) was performed according to the Bloom and Richardson system [11]. There were 53.7% (22/41) tumours in pT1 stage and 46.3% (19/41) in pT2 stage. 48.8% (20/41) of women had involved lymph nodes at the time of diagnosis. Patients had not received any preoperative chemotherapy or hormonotherapy. The age of patients ranged from 33 to 83 years, with a mean of 51.9 years. The local ethical committee approved the protocol of this study.

2.2. RNA extraction and cDNA synthesis

Total RNA was extracted from frozen breast and matched tissues according to the Chomczynski and Sacchi method [12]. RNA integrity was verified by electrophoresis in 1.5% (w/v) agarose gel and staining with ethidium bromide, and by amplification of the house-keeping gene, GAPDH. RNA was quantified spectrophotometrically at 260 nm. One microgram of total RNA was used to prepare cDNA. cDNA synthesis was performed in 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM DTT, 1 mM dNTP mix (Promega), 2.5 μM oligo dT15, 20 U RNasin Ribonuclease Inhibitor (Promega), 100 U Moloney murine leukaemia virus (MMLV) reverse transcriptase (Promega) in a final volume of 40 μl using MJ Research Thermal Cycler (Model PTC-200, Watertown, MA, USA). For reverse transcription, the mixtures were incubated at 42°C for 60 min and then heated at 95°C for 5 min and finally cooled rapidly at 4°C .

2.3. RT-PCR

To determine the amounts of ER α and ER β , two standard curves were constructed with serially diluted PCR products. PCR products were obtained by amplification cDNA from normal mammary gland using specific primers as follows: sense: 5'TGC TTC AGG CTA CCA TTA TGG AGT CTG3'; antisense: 5'GTC AGG GAC AAG GCC AGG CTG3' for ER α ; sense: 5'TTT AAA GAA GCA TTC AAG GAC ATA ATG3', antisense: 5'GAA GTG TGG CTC CCG GAG AGA GAG A3' for ER β . PCR was carried out in a final volume of 50 μl using 25 pmol of each of the primers, 40 μM of each of dNTPs, 1.5 U Taq polymerase (Finnzymes, Finland), 5 μl 10-fold PCR buffer and 5 μl cDNA. PCR was carried out under the following conditions: 5 min at 95°C , 1 min denaturation at 95°C , 1 min

annealing at 60 °C, 1 min extension at 72 °C for 40 cycles, with an additional 10 min extension for the last cycle. Amplified products were separated on a 2% (w/v) agarose gel, extracted and purified from agarose slices using DNA Gel Extraction Kit (Millipore, USA), quantified by the use of One Dscan/Zero Dscan software (Scanalytics Inc., USA) and then serially diluted in sterile water.

All RT-PCR reactions were performed using ABI Prism 7000 Sequence Detection System (Perkin–Elmer Applied Biosystems, USA). For each PCR run, a master mix was prepared with 10 ml 2× Taq Man Universal PCR Master Mix (Applied Biosystems), 1 µl 20× Assays-on Demand Gene Expression Assay Mix (Applied Biosystems), 5 µl cDNA or diluted standard and sterile water to final volume of 20 µl.

2.4. Quantitative competitive RT-PCR

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) standard was prepared as described previously by Bouraima *et al.* [13] using pBR322 vector as a template. The specific primers (sense Bene 1P1B: 5'TCA TCC ATG ACA ACT TTG GTA TCG TGC GGC ATC AGA GCA GAT TGT ACT GAG 3'; antisense Bene 2M1B: 5'GTG CTC AGT GTA GCC CAG GAT GCG GGG AAA CGC CTG GTA TCT TTA TAG TCC3') were designed so that the 5' ends of sense and antisense primers were complementary to the GAPDH mRNA sequence and the 3' ends of these primers were complementary to the pBR322 sequence. At the 5' and 3' ends the PCR product contained complementary sequences to specific GAPDH primers used in quantitative competitive PCR. PCR was carried out in a final volume of 50 µl, using 25 pmol of each of the primers, 40 µM of each of dNTPs, 1.5 U Taq polymerase (Finnzymes, Finland), 5 µl 10-fold PCR buffer and 1 ng pBR322 vector. PCR was carried out under the following conditions: 5 min at 95 °C, 1 min denaturation at 95 °C, 1 min annealing at 60 °C, 1 min extension at 72 °C for 30 cycles, with an additional 10 min extension for the last cycle. Amplified products were subjected to electrophoresis on a 2% (w/v) agarose gel, extracted and purified from agarose slices using DNA Gel Extraction Kit, quantified by the use of One Dscan/Zero Dscan software and then diluted in sterile water.

To determine amounts of GAPDH mRNA, quantitative competitive PCR was performed in a final volume of 50 µl using 25 pmol of each of the primers (sense Bene1: 5'TCA TCC ATG ACA ACT TTG GTA TCG TG3', antisense Bene2: 5'GTG CTC AGT GTA GCC CGG ATG C3'), 40 µM of each of dNTPs, 1.5 U Taq polymerase (Finnzymes, Finland), 5 µl 10-fold PCR buffer, 5 µl cDNA from studied tissues and 5 µl diluted standard in the same tube. For each analysed tissue

two dilutions of GAPDH standard were used (0.5 and 50 pg). All the results obtained (in pg) were converted into pmol of GAPDH per µg total RNA. PCR was carried out under the same conditions as described for GAPDH standard building. Amplified products were separated on a 4% (w/v) agarose Metafor gel and quantified by the use of One Dscan/Zero Dscan software.

2.5. Gel electrophoresis and Western blot analysis

Western blot analysis was performed on 41 breast cancer samples and 20 matched tissues. Patient tissues were pulverised in a mortar and homogenised further on ice in lysis solution consisting of 50 mM Tris–HCl, pH 7.4; 1% (v/v) Nonidet P-40; 0.25% (w/v) deoxycholic acid (DOC); 150 mM NaCl; 1 mM Na₃VO₄, 1 mM EDTA, 1 mM NaF and protease inhibitors (10 µg/ml leupeptin, 2 µg/ml aprotinin and 200 mM phenylmethylsulphonyl fluoride (PMSF)). After the lysis samples were boiled for 5 min in 62.5 mM Tris–HCl, pH 6.8 containing 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 10% (v/v) glycerol and 0.001% (w/v) bromophenol blue. The samples were electrophoresed on 0.1% (v/v) SDS–polyacrylamide gel (37.5/1 acrylamide/bisacrylamide, composed of 4% (v/v) stacking gel and a 10% (v/v) separating gel) at 50 V/gel for 1.5 h at room temperature in a pH 8.3 running buffer containing 25 mM Tris, 192 mM glycine and 0.1% (w/v) sodium dodecyl sulphate (SDS).

After SDS-PAGE, the protein was transferred to 0.2 µm pore sized nitrocellulose at 100 mA for 1 h by the use of an LKB 2117 Multiphor II electrophoresis unit according to the method described in the manual accompanying the unit. Nitrocellulose was blocked with 5% (w/v) dried milk in TBS-T buffer (20 mM Tris–HCl pH 7.4, 150 mM NaCl, 0.005% (v/v) Tween 20) for 1 h at room temperature, shaking slowly. Then the nitrocellulose was incubated with the rabbit polyclonal antibodies against ERα (HC-20, Santa Cruz Biotechnology, SCBt, USA) and against ERβ (H-150, SCBt, USA) diluted 1:200 in blocking buffer for 1 h. After the incubation, nitrocellulose was washed three times for 10 min in blocking buffer and then incubated with secondary antibody conjugated with alkaline phosphatase at concentration 1:1000 in TBS-T and incubated for 1 h, shaking slowly. Nitrocellulose was washed with TBS-T (three times for 10 min) and submitted to Sigma-Fast BCIP/NBT (Sigma, Germany) reagent.

2.6. Immunohistochemistry

For IHC studies we selected two representative sections from each case of breast cancer and matched normal mammary gland tissue. Four markers were investigated: ERα, ERβ, PGR and Ki-67. ERα was detected with a mouse monoclonal antibody (F-10,

SCBt, USA) at dilution 1:200. ER β was assessed with the rabbit polyclonal antibody (H-150, SCBt, USA) at dilution 1:200. PGR was investigated using monoclonal mouse PGR antibody (clone 636, Dako, Denmark) at 1:100 dilution. Ki-67, a proliferation marker, was assessed using the monoclonal mouse antibody (MIB-1, Dako, Denmark) at 1:100 dilution.

The sections were deparaffinised in xylenes and hydrated through graded alcohols. Antigen unmasking was performed using heat treatment in a microwave oven at 750 W for 7 min in a container with 10 mM sodium citrate buffer, pH 6.0. Sections were allowed to cool in the buffer at room temperature for 30 min and were rinsed in deionised water three times for 2 min each. The endogenous peroxidase activity was blocked with 1% (v/v) hydrogen peroxide for 20 min. Then the sections were incubated with ER α or ER β antibody at 4 °C overnight or with PGR or MIB-1 antibody for 1 h at room temperature using staining chamber (The Binding Site, UK). Primary antibodies were diluted in phosphate-buffered saline (PBS). After rinsing in three changes of PBS, an avidin–biotin–peroxidase complex (SCBt, USA) for ER α and ER β and a streptavidin–biotin–peroxidase complex (LSAB kit, Dako, Denmark) for PGR and Ki-67 were used to reveal antibody–antigen reactions. Staining was routinely developed using 3,3'-diaminobenzidine as a chromogen (Dako, Denmark). Sections were counterstained with haematoxylin. Two independent pathologists evaluated immunostainings by the use of light microscopy (20 \times and 40 \times objectives). The evaluation of ER α , ER β , PGR and Ki-67 expression was analysed in 10 different tumour and normal mammary gland fields and the mean percentage of tumour as well as normal mammary gland cells with positive staining was evaluated. The sections were classified as positive when at least 10% of cells expressed the antigen studied. We performed the following IHC controls: positive controls including breast cancers previously documented as positive for ER α , ER β , PGR and Ki-67; negative controls including omission of primary antibodies.

2.7. Statistical analysis

Mean values \pm standard deviations (SD) were calculated. The results were analysed using the Mann–Whitney test and Spearman's correlation test, accepting $P < 0.05$ as significant.

3. Results

3.1. Expression of ER α and ER β mRNA

To evaluate the levels of ER α and ER β mRNA expression, two curves (prepared as described in Section

2) were used: for ER α 100–10–1–0.1–0.001 fg (Fig. 1(a)), and for ER β : 1–0.1–0.01–0.001 fg (Fig. 2(a)). All the results obtained (in fg) were converted to fmol of ERs per μ g of total RNA, and then corrected by the level of GAPDH mRNA (calculated as described in Section 2). RT-PCR revealed the presence of transcripts of both ER α and ER β in all the breast cancer tissues analysed. ER α and ER β mRNAs were also detected in all matched normal mammary gland tissues. ER α values in breast cancer tissues ranged from 1.8×10^{-5} to 220.5 fg/ μ g of RNA (mean 21.61 fg/ μ g of RNA \pm SD 43.8; Figs. 1(b) and 3). The expression of ER β showed much less range in the amount of ER β transcripts (Figs. 2(b) and 3), ER β values for the breast tissues samples ranged from 0.01 to 0.25 fg/ μ g of RNA (mean 0.088 fg/ μ g RNA \pm SD 0.096). Analysis of the matched normal tissues has revealed that the level of ER α mRNA was much lower in comparison with breast cancer tissues (mean 11.76 fg/ μ g of RNA \pm SD 13.9; Figs. 1(c) and 3), but expression of ER β mRNA displayed opposite trends. There were many more transcripts of ER β in the matched tissues than in the breast cancer tissues (mean 0.54 fg/ μ g of RNA \pm SD 1.0; Figs. 2(c) and 3). We also observed a positive correlation between both ER's transcript levels ($P < 0.002$, $r = 0.532$).

3.2. Expression of ER α and ER β protein by Western blot analysis

Western blot analysis was performed on the same 41 breast cancer tissues and 20 matched normal mammary gland tissues to confirm the expression of ERs at the protein level. Seventy percent of analysed breast tumours and only 5% of matched normal tissues produced full-length ER α protein corresponding to approximately 65 kDa (Fig. 4(a) and (b)). Ninety-seven percent of analysed tumours and 95% of matched normal tissues showed the presence of an immunopositive protein band of approximately 57 kDa corresponding to wild-type ER β (Fig. 4(c) and (d)).

3.3. Expression of ER α , ER β , PGR and Ki-67 using IHC

IHC analysis of breast cancers revealed nuclear localisation of ER α (Fig. 5(a)), PGR (Fig. 5(e)) and Ki-67 (Fig. 5(f)) while the expression of ER β was cytoplasmic and perinuclear (Fig. 5(c)). ER α and ER β in normal breast tissues were shown in Fig. 5(b) and (d), respectively. After omission of primary antibody in negative controls, specific staining was abolished. In the tumour sections studied, 67% of cases were positive for ER α , 67% positive for ER β , 58% positive for PGR and 93.5% expressed Ki-67. In three cases of ER α -positive breast cancers we did not find positive PGR expression.

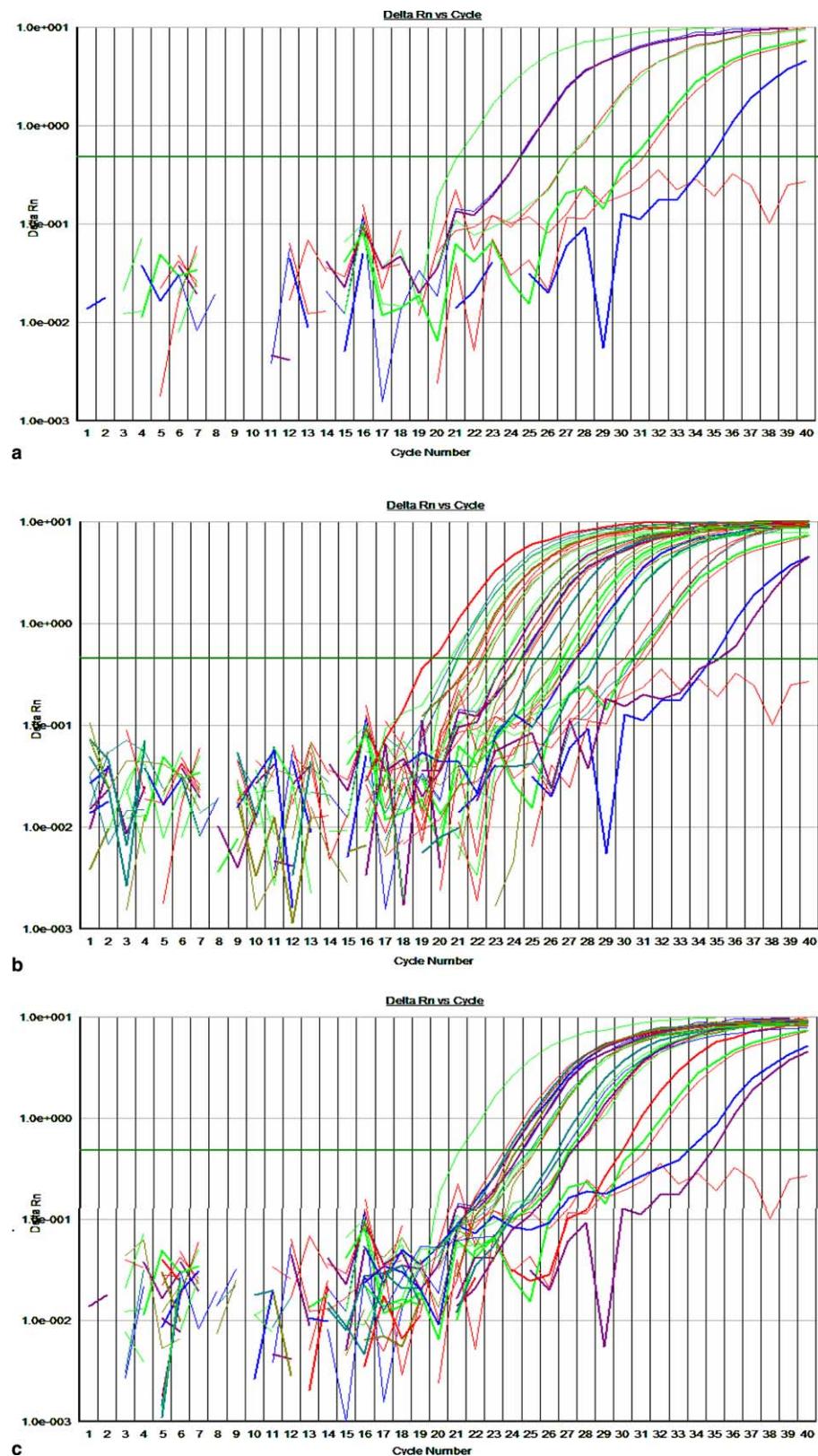


Fig. 1. Real-time amplification plot of ER α mRNA. (a) Standard curve of serial diluted polymerase chain reaction (PCR) product: 100–10–1–0.1–0.001 fg. (b) ER α transcripts were detected in all breast cancer tissues as well as in (c) matched normal tissues. ER α mRNAs levels were much lower in matched normal tissues (mean 11.76 fg/ μ g of RNA \pm SD 13.9, $n = 20$) than in breast cancer tissues (mean 21.61 fg/ μ g of RNA \pm SD 43.85, $n = 41$).

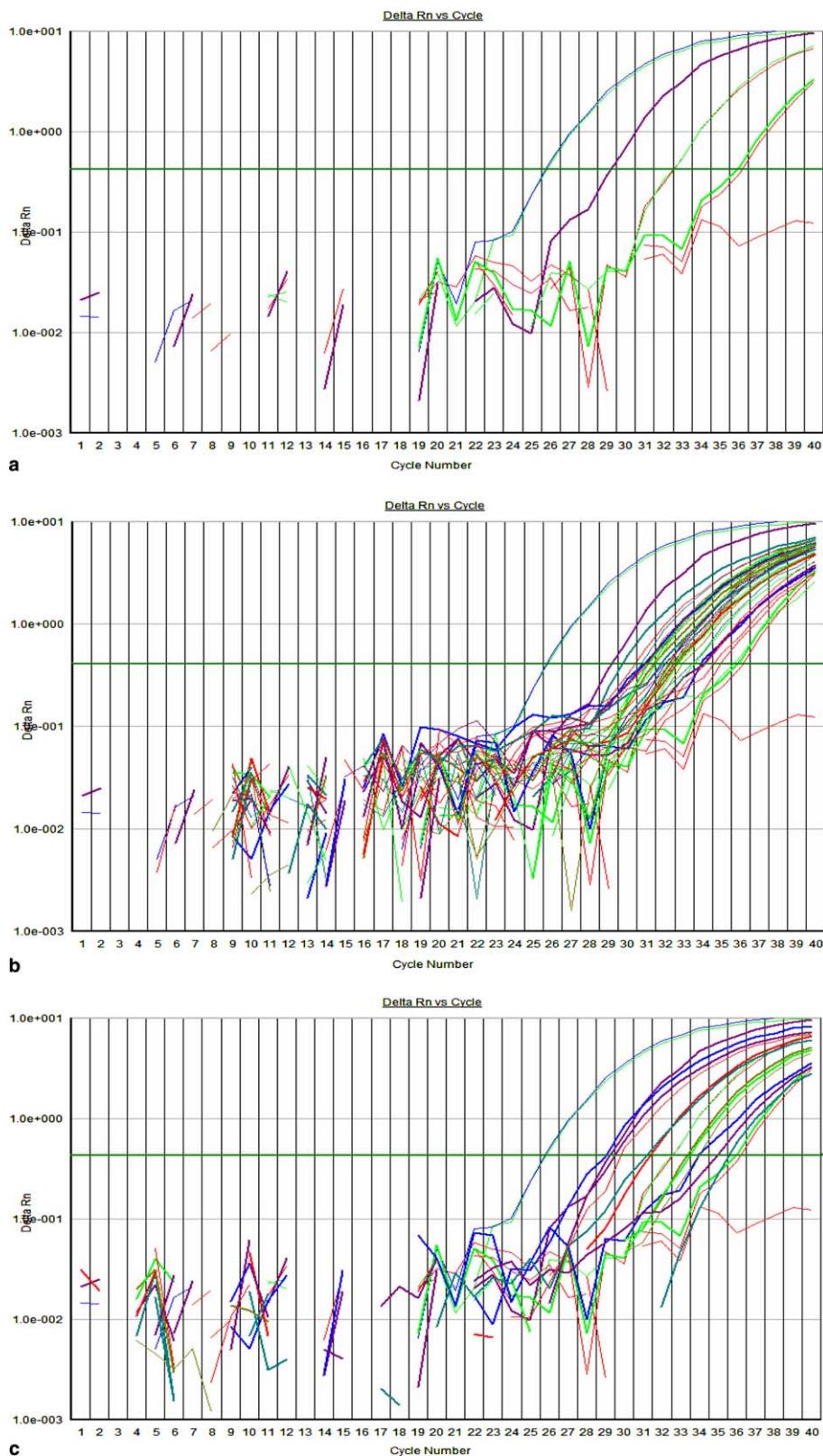


Fig. 2. Real-time amplification plot of ER β mRNA. (a) Standard curve of serial diluted PCR product: 100–10–1–0.1–0.001 fg. (b) ER β mRNAs were detected in all cancer tissues as well as in (c) normal matched tissues. There were more transcripts of ER β in the matched tissues (mean 0.54 fg/ μ g of RNA \pm SD 1.0, n = 20) than in the breast cancer tissues (mean 0.088 fg/ μ g of RNA \pm SD 0.096, n = 41).

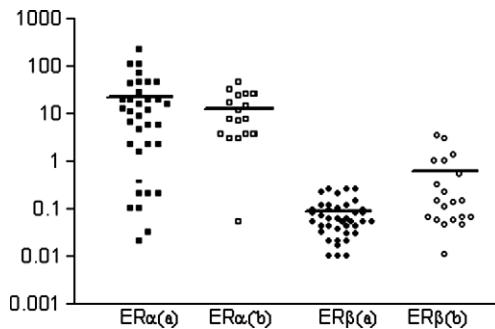


Fig. 3. Individual values on a log scale for both ER α as well as ER β transcripts in tumours ($n = 41$) and normal matched tissues ($n = 20$) with marked mean values. Mean values for ER α mRNAs in breast tumours (ER α (a)) and in normal matched tissues (ER α (b)) were 21.61 fg/ μ g of RNA and 11.76 fg/ μ g of RNA, respectively; mean values for ER β mRNAs in breast tumours (ER β (a)) and in normal matched tissues (ER β (b)) were 0.088 fg/ μ g of RNA and 0.54 fg/ μ g of RNA, respectively.

3.4. Correlation of ER α and ER β mRNA with ER α and ER β protein assessed by IHC

ER α expression at mRNA level correlated positively with ER α expression at protein level ($P < 0.0001$, $r = 0.848$). There was also statistically significant positive correlation, but with weak correlation coefficient between ER β mRNA expression and ER β protein expression ($P < 0.03$, $r = 0.390$). Thus, the tumours that failed to express the ER α as well as ER β showed low levels of ER α and ER β transcripts, respectively.

3.5. Correlation of ER α and ER β expression with selected clinical and pathological features

Statistically significant positive correlation was found between ER α expression by IHC and the age of patients ($P < 0.006$, $r = 0.483$). We also observed a trend toward positive relationship between ER α expression assessed

by RT-PCR and Western blot analysis and age ($P = 0.066$, $r = 0.334$; $P = 0.077$, $r = 0.327$, respectively). There was no association between ER α , ER β expression and lymph node status, tumour size or tumour differentiation.

3.6. Correlation of ER α and ER β expression with PGR status and Ki-67

ER α expression at mRNA as well as at protein level positively correlated with PGR expression ($P < 0.0009$, $r = 0.565$; $P < 0.009$, $r = 0.46$; $P < 0.0003$, $r = 0.616$ for ER α assessed by IHC, Western blot analysis and RT-PCR, respectively). There was no correlation between ER β and PGR status. Negative correlation was found between ER α expression and Ki-67 status ($P < 0.02$, $r = -0.437$; $P < 0.0005$, $r = -0.604$; $P < 0.02$, $r = -0.451$ for ER α assessed by IHC, Western blot analysis and RT-PCR, respectively).

4. Discussion

The status of ER is routinely examined by IHC, but there are very few investigations in which ER expression has been performed at different molecular levels. By the use of RT-PCR we showed the presence of both ER α and ER β mRNA in all analysed breast tumours and matched normal tissues. It was shown that the leader sequence 5' of the ER transcript contains CpG islands, which could be hypermethylated in breast cancer, and therefore it might be responsible for lack of expression of the ER gene [14–16]. Our results and several recent data do not confirm this hypothesis. Alkarain *et al.* [4] examined 200 ER-negative and 50 ER-positive breast tumours assessed previously by IHC and showed that all of the 250 breast tumours analysed expressed mRNA transcripts of ER α , and the mean ER α mRNA values

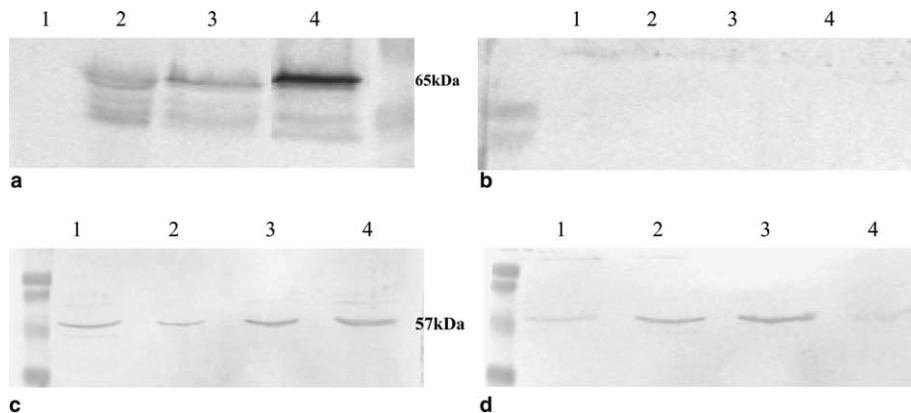


Fig. 4. Representative Western blot analysis of ER α and ER β protein expression. (a) Full-length 65 kDa ER α protein was expressed in breast cancer tissues (lanes 2–4) and lack of expression in breast cancer tissue (lane 1). (b) Lack of expression of ER α in normal matched tissues. (c) 57 kDa ER β protein was produced in breast cancer tissues as well as (d) in normal matched tissues.

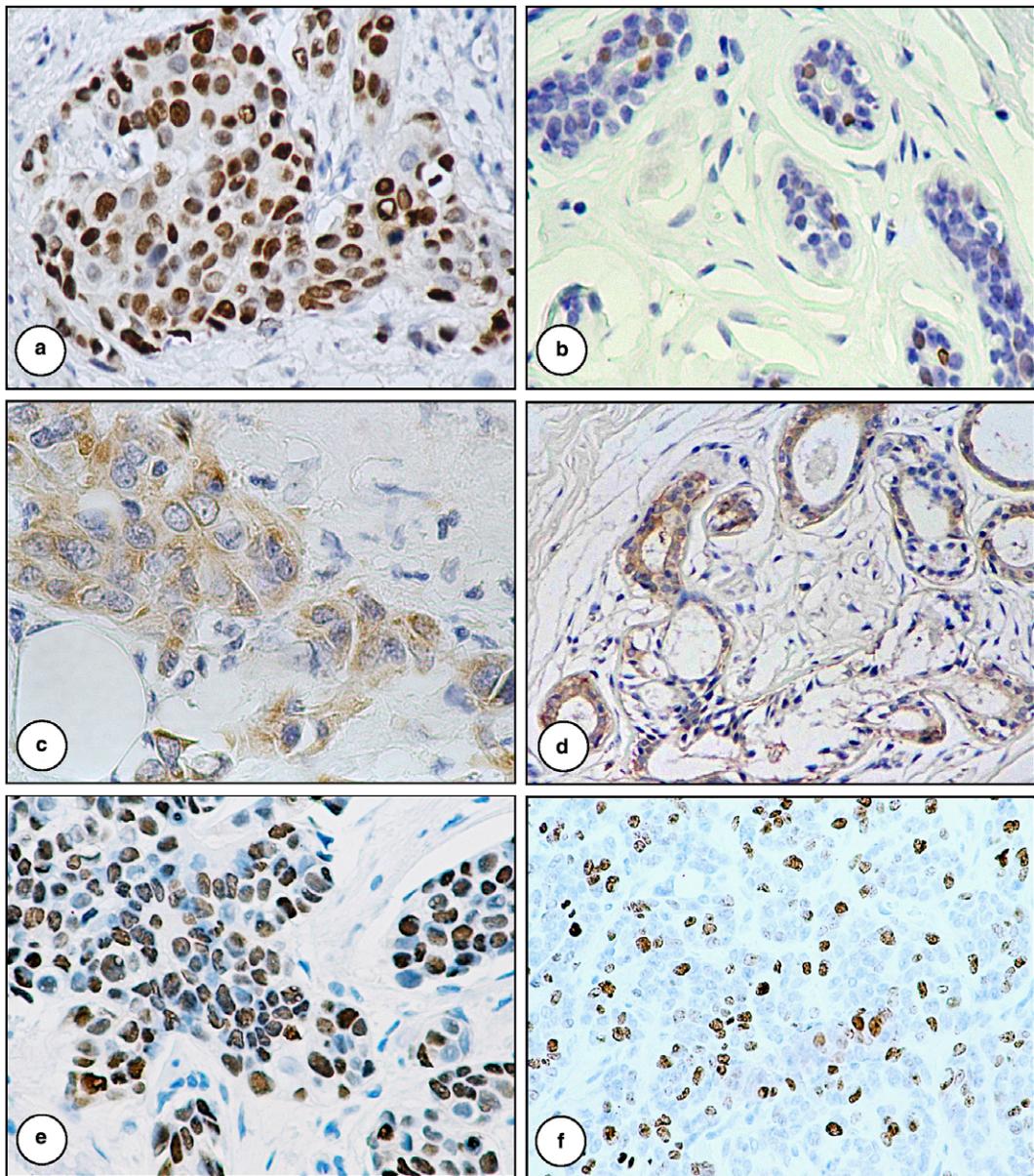


Fig. 5. (a) Strong nuclear immunostaining for ER α in majority of breast cancer cells and (b) in some cells of non-malignant tissue adjacent to tumour. (c) Positive cytoplasmic and focally perinuclear immunostaining for ER β in breast cancer tissue and (d) in non-malignant tissue adjacent to tumour. Positive nuclear immunostainings for (e) PGR and (f) Ki-67 in breast cancer cells. Original magnifications: (a,b,d–f) 200 \times ; (c) 400 \times .

did not differ significantly between two breast cancer groups. Our results seem to confirm the hypothesis that breast cancer could arise from ER-positive progenitor cells [17]. In the present study the analysed breast tumours showed a much larger amount of ER α mRNA than ER β mRNA (means \pm SD: 21.61 ± 43.85 , 0.088 ± 0.096 , respectively), which confirmed previous data [18,19]. Similarly to Bieche *et al.* [18], ER α transcript levels were up to 103-fold higher than ER β . ER β transcript levels in the breast tumours were significantly lower than in the matched normal tissues, but the amount of ER β mRNA in the individual tumours was similar. Distribution of ER α transcripts in the tumour

and matched tissues was opposite to ER β . There were more transcripts of ER α in the tumours than in the matched tissues. ER α mRNA expression showed far larger diversity in the separate tumours. This observation might suggest that ER α is more dysregulated in breast cancer, and thereby ER β is more tightly regulated in the tumour. Our data clearly showed, in agreement with previously results, that the majority of breast tumours overexpressed ER α mRNA [4,18,19]. The analysis of adjacent normal breast tissues also confirmed upregulation of the ER α gene in tumours, although we did not note statistical significance at ER α mRNA level between cancerous and normal tissues ($P = 0.09$). On the other

hand, ER α protein in breast cancer tissue was significantly higher compared with that in adjacent normal breast tissue, as assessed by Western blot analysis ($P < 0.005$). In most of the matched normal tissues (73%) ER α mRNA was expressed at a much lower level than in cancerous tissues, whereas ER β mRNA showed an opposite trend. These data confirmed previous investigations [20] that ER β mRNA was downregulated during carcinogenesis related to ER α . Although there have been some reports about expression of ER β in breast cancer based on the analysis of mRNA using RT-PCR methods, the status of ER β in breast tumour seems to be ambiguous. Numerous studies have reported co-expression of ER α and ER β in breast tumour [4,7,18,21]. Dotzlaw *et al.* [22] and de Cremoux *et al.* [23] did not show any relationship between ER α mRNA and ER β mRNA expression, whereas Knowlden *et al.* [19] and Bieche *et al.* [18] reported negative correlation between ER α and ER β mRNA levels. However, in our study we observed a positive correlation between transcript levels of both ERs ($P < 0.002$, $r = 0.532$).

In previous reports, ER α mRNA was detected in 92% of breast cancers and ER β mRNA in 85%, however, after protein translation the percentages of the cases of ER α (+) and ER β (+) decreased [9]. Using Western blot analysis we showed that 70% of breast cancer expressed full-length 65 kDa ER α protein and 67% of tumours analysed were also ER α -positive in IHC assay. Only in a few adjacent tissues did we show ER α 65 kDa protein. It is accepted that 5–15% of normal epithelial cells in the mammary gland express ER α [1]. In the present study in the normal mammary gland adjacent to the breast cancer, we also observed approximately 15% of ER α -positive cells assessed by IHC (data not published).

It was shown that expression of ER β protein decreased in neoplastic breast cells [5,24]. Our data revealed that 97% of analysed tumours produced full-length 57 kDa ER β protein and the same percentage of 57 kDa isoform was observed in matched normal tissues. In IHC studies, 67% of assessed tumours showed cytoplasmic and perinuclear immunoreaction to this receptor. The analysis of ER β by Western blot revealed expression of this receptor in tumours containing breast cancer cells as well as in the surrounding stromal tissue (including fibroblasts, lymphocytes and endothelial cells). In our opinion it could be one of the factors responsible for the observed differences in ER β expression in tumours assessed by Western blot and IHC. The cytoplasmic and perinuclear localisation of ER β may suggest that ER β may be inactive as a classical transcriptional factor and that this receptor can probably get out rapidly from the nucleus and shuttle repeatedly between nucleus and cytoplasm [25]. In a recent study Bjornstrom and Sjoberg [26] suggested that signal transduction pathways through ERs localised in the cytoplasm could be an additional mechanism by which

ERs are able to modulate the transcriptional activity of AP-1 via a non-genomic pathway. On the other hand, Chen *et al.* [27] demonstrated the presence of ER α and ER β within the mitochondria of MCF-7 breast cancer cells and predominant receptor was ER β . They also observed that the mitochondrial oestrogen effects were associated with increased respiratory chain activity and decreased apoptosis. It is thought that ER localised in the cytoplasm can activate E2-independent intracellular signalling cascades including MAP kinases and PI-3-K signalling pathways [28]. The evidence for presence of ER β in most of the breast tumours analysed forced us to re-evaluate what 'oestrogen-independence' means. It seems that in breast cancer cells, E2 plays its essential role through the modification of the tumour biology and therefore the classical term of 'oestrogen-dependence' might be related to its proliferation effect. The function of ER β independent of ER α is unknown, although it has been speculated that when both ERs are co-expressed, ER β could negatively regulate ER α through ER α /ER β heterodimers [29]. In the case of ER α /ER β heterodimerisation, it has been suggested that mechanism of the oestrogen signal transduction pathway leading to proliferation of breast cancer cells can be altered.

It was established that ER α is a key transcription factor activating PGR gene containing ERE in its promoter. Since PGR is E2 regulated, it is a marker of functional ER, and lack of PGR in ER α (+) breast cancer could result in alteration of classical oestrogen-mediated pathway in such tumours [30,31]. We showed that PGR protein correlated with ER α mRNA as well as ER α protein (but not with ER β). Using IHC we observed that 58% of breast tumours analysed co-expressed both ER α and PGR, but 3 cases of ER α (+) breast tumour did not express PGR.

It was established that proliferating cells express proliferation markers such as Ki-67 and proliferating cell nuclear antigen (PCNA) [32–34]. The relationships between ER α , ER β and markers of proliferation presented in many studies are inconsistent. In our study we showed negative correlation between expression of ER α (at mRNA and protein levels) and Ki-67. This association between ER α and Ki-67 was stronger in a group of patients where ER α protein was detected. We did not observe any association between ER β and Ki-67. In the recent study followed by Choi and Pinto, Ki-67 was almost exclusively expressed in ER β positive cells but no statistical significant association was found between ER β and S-phase [35]. These results could suggest that beside implication of ER α in cell proliferation, ER α itself might act as a proliferation inhibitory factor. It was observed that normal epithelial mammary cells that express ER α do not proliferate and do not produce proliferation markers. Cheng *et al.* [36] observed in mice that E2 does indeed initiate proliferation by interacting

with ER α or ER β in the epithelial cells in the mammary gland. However, very shortly after the cell enters the cell cycle, ER α is down-regulated, and this is the reason why ER α is never colocalised in nuclei with proliferation markers. This blocking mechanism of proliferation is probably not so efficient in breast cancer cells, but nevertheless, the majority of neoplastic cells containing ER α do not enter into cell cycle. It is noteworthy that such tumours require E2 to their development and selective oestrogen receptor modulators (SERMs), oestrogen receptor down regulators (ERDR) or aromatase inhibitory treatment can block E2 action (inhibit development). It still remains an open question whether malignant breast cells that express ER α proliferate? Two hypotheses explaining why ER α -positive breast cancer cells proliferate have been proposed. One hypothesis holds that ER α might undergo proteolytic degradation via the ubiquitin pathway and then could not act as a cell cycle inhibitory factor. Another hypothesis is that ER α -dependent signal transduction pathway upregulates other autocrine factors in ER α -positive malignant cells that induce the proliferation of the surrounding of mammary epithelial cells. This first hypothesis seems likely in light of the evidence in our study that some of ER α -dependent breast tumours express ER α mRNA whereas ER α protein is not produced. These observations raise the possibility that the ubiquitination and proteolysis may cause ER α removal from the proliferating cells. It seems that the loss of ER α is probably due to progressive dedifferentiation process in cancer cells and then enhanced ubiquitination and proteolysis. Further development of such tumours may be E2-independent.

In the present study, we also analysed the relationships between studied markers and selected anatomo-clinical features of breast cancer. We observed positive correlation between ER α expression at all the studied levels and the age of patients, and Ki-67 expression negatively correlated with age. These observations suggest that proliferation of breast cancer cells decreases with age. The expression of both ERs in the present study was not associated with lymph node status, tumour size or tumour grade. Jensen *et al.* [37] analysing 34 breast cancer samples also showed no relationship between the expression of ER α , ER β proteins and tumour differentiation. Jarvinen *et al.* [38] studied 92 breast cancer tissues and observed the correlation between ER α expression, histological grade and tumour size and did not find any association between ER α and nodal status of the tumour. However, ER β status was more common in axillary node-negative than in node-positive tumours, but no association was found with tumour size.

Our data suggest that ER α and ER β are differently regulated in breast cancer and ER α seems to be much more deregulated than ER β . The dysregulation of ER α expression at the gene and protein levels and oest-

rogen-dependent signalling pathways in breast cancer could be exploited to discover target drugs that would be more tailored to an individual tumour.

Conflict of interest statement

None declared.

Acknowledgement

This work was supported by the Polish State Committee for Scientific Research (Grant KBN No. 3PO5E 158 23).

References

- Speirs V, Skliris GP, Burdall SE, *et al.* Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. *J Clin Pathol* 2002, **55**, 371–374.
- de Graffenreid LA, Hilsenbeck SG, Fuqua SA. Sp1 is essential for estrogen receptor α gene transcription. *J Steroid Biochem Mol Biol* 2002, **82**, 7–18.
- de Graffenreid LA, Hopp TA, Valente AJ, *et al.* Regulation of the estrogen receptor alpha minimal promoter by Sp1, USF-1 and ERalpha. *Breast Cancer Res Treat* 2004, **85**, 111–120.
- Alkarain A, McMahon C, Seth A, *et al.* Estrogen receptor negative breast cancer express estrogen receptor mRNA abstract. *Eur J Cancer* 2004, **2**, 46.
- Roger P, Sahla ME, Makela S, *et al.* Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. *Cancer Res* 2001, **61**, 2537–2541.
- Harvey JM, Clark GM, Osborne CK, *et al.* Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. *J Clin Oncol* 1999, **17**, 1474–1481.
- Speirs V, Malone C, Walton DS, *et al.* Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. *Cancer Res* 1999, **59**, 5421–5424.
- Cullen R, Maguire TM, McDermott EW, *et al.* Studies on oestrogen receptor-alpha and -beta mRNA in breast cancer. *Eur J Cancer* 2001, **37**, 1118–1122.
- Shaw JA, Udokang K, Mosquera JM, *et al.* Oestrogen receptors alpha and beta differ in normal human breast and breast carcinomas. *J Pathol* 2002, **198**, 450–457.
- Tavassoli FA, Devilee P. *Pathology and genetics of tumours of the breast and female genital organs*. Lyon, IARC Press, 2003., p. 9–59.
- Bloom HJG, Richardson WW. Histological grading and prognosis in breast cancer. *Brit J Cancer* 1957, **11**, 359–377.
- Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. *Anal Biochem* 1987, **162**, 156–159.
- Bouraima H, Hanoux V, Mitre H, *et al.* Quantification of cytochrome P450 aromatase transcripts before and during luteal phase in rabbit. *Mol Cell Endocrinol* 2002, **196**, 43–51.
- Ferguson AT, Lapidus RG, Baylin SB, *et al.* Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. *Cancer Res* 1995, **55**, 2279–2283.
- Ferguson AT, Vertino PM, Spitzner JR, *et al.* Role of estrogen receptor gene demethylation and DNA methyltransferase. DNA

adduct formation in 5-aza-2'-deoxycytidine-induced cytotoxicity in human breast cancer cells. *J Biol Chem* 1997, **272**, 32260–32266.

16. Zhao C, Lam EW, Sunters A, et al. Expression of estrogen receptor beta isoforms in normal breast epithelial cells and breast cancer: regulation by methylation. *Oncogene* 2003, **22**, 7600–7606.
17. Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. *Trends Endocrinol Metab* 2004, **15**, 193–197.
18. Bieche I, Parfait B, Laurendeau I, et al. Quantification of estrogen receptor α and β expression in sporadic breast cancer. *Oncogene* 2001, **20**, 8109–8115.
19. Knowlden JM, Gee JM, Robertson JF, et al. A possible divergent role for the oestrogen receptor alpha and beta subtypes in clinical breast cancer. *Int J Cancer* 2000, **89**, 209–212.
20. Iwao K, Miyoshi Y, Ooka M, et al. Quantitative analysis of estrogen receptor-alpha and -beta messenger RNA expression in human pancreatic cancers by real-time polymerase chain reaction. *Cancer Lett* 2001, **170**, 91–97.
21. Lewandowski S, Kalita K, Kaczmarek L. Estrogen receptor β . Potential functional significance of a variety of mRNA isoforms. *FEBS Lett* 2002, **524**, 1–5.
22. Dotzlaw H, Leygue E, Watson PH, et al. Expression of estrogen receptor-beta in human breast tumors. *J Clin Endocrinol Metab* 1997, **82**, 2371–2374.
23. de Cremoux P, Tran-Perennou C, Elie C, et al. Quantitation of estradiol receptors α and β and progesterone receptors in human breast tumors by real-time reverse transcription-polymerase chain reaction. Correlation with protein assays. *Biochem Pharmacol* 2002, **64**, 507–515.
24. Lazennec G, Bresson D, Lucas A, et al. ER beta inhibits proliferation and invasion of breast cancer cells. *Endocrinology* 2001, **142**, 4120–4130.
25. Yamashita S. Localization and functions of steroid hormone receptors. *Histol Histopathol* 1998, **13**, 255–270.
26. Bjornstrom L, Sjoberg M. Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. *Nucl Recept* 2004, **2**, 3.
27. Chen JQ, Delannoy M, Cooke C, et al. Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. *Am J Physiol Endocrinol Metab* 2004, **286**, 1011–1022.
28. Campbell RA, Bhat-Nakshatri P, Patel NM, et al. Phosphatidyl-inositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. *J Biol Chem* 2001, **276**, 9817–9824.
29. Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ER β) of the human estrogen receptor modulates ER α transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. *Endocrinology* 1999, **140**, 5566–5578.
30. Ravdin PM, Green S, Dorr TM, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. *J Clin Oncol* 1992, **10**, 1284–1291.
31. Graham JD, Roman SD, McGowan E, et al. Preferential stimulation of human progesterone receptor B expression by estrogen in T-47D human breast cancer cells. *J Biol Chem* 1995, **270**, 30693–30700.
32. Siitonen SM, Kallioniemi OP, Isola JJ. Proliferating cell nuclear antigen immunohistochemistry using monoclonal antibody 19A2 and a new antigen retrieval technique has prognostic impact in archival paraffin-embedded node-negative breast cancer. *Am J Pathol* 1993, **142**, 1081–1089.
33. Keshgegian AA, Cnaan A. Proliferation markers in breast carcinoma. Mitotic figure count, S-phase fraction, proliferating cell nuclear antigen, Ki-67 and MIB-1. *Am J Clin Pathol* 1995, **104**, 42–49.
34. Koda M, Jarzabek K, Kanczuga-Koda L, et al. Comparative studies of Ki-67 expression between the primary tumor and breast cancer metastases to regional lymph nodes. *Ginekol Pol* 2003, **74**, 754–760.
35. Choi Y, Pinto M. Estrogen receptor beta in breast cancer: associations between ERbeta, hormonal receptors, and other prognostic biomarkers. *Appl Immunohistochem Mol Morphol* 2005, **13**, 19–24.
36. Cheng G, Weihua Z, Warner M, et al. Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. *Proc Natl Acad Sci USA* 2004, **101**, 3739–3746.
37. Jensen EV, Cheng G, Palmieri C, et al. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. *Proc Natl Acad Sci USA* 2001, **98**, 15197–15202.
38. Jarvinen TA, Pelto-Huikko M, Holli K, et al. Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. *Am J Pathol* 2000, **156**, 29–35.